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Abstract. The ab initio No-Core Shell Model (NCSM) adopts an intrinsic Hamiltonian for all nucleons in
the nucleus. Realistic two-nucleon and tri-nucleon interactions are incorporated. From this Hamiltonian,
an Hermitian effective Hamiltonian is derived for a finite basis space conserving all the symmetries of the
initial Hamiltonian. The resulting finite sparse matrix problem is solved by diagonalization on parallel
computers. Applications range from light nuclei to multiquark systems and, recently, to similar problems
in quantum field theory. We present this approach with a sample of recent results.

PACS. 21.60.Cs Shell model – 23.20.-g Electromagnetic transitions – 23.20.Js Multipole matrix elements

1 Introduction

In the ab initio No-Core Shell Model (NCSM), we de-
fine an Intrinsic “bare” Hamiltonian to include a realis-
tic nucleon-nucleon (NN) interaction and, in some cases,
include a theoretical tri-nucleon (NNN) interaction. We
utilize an NN interaction model that describes the NN
data to high precision. This can be phenomenologically
inspired or based on chiral field theory. These interactions
may feature charge-symmetry breaking, may be non-local,
and may be strongly repulsive at short distances. Recently
obtained NN potentials from inverse scattering theory are
also investigated and applied to light p-shell nuclei. The
NNN interactions are taken from either meson-exchange
theory or chiral field theory.

In order to accommodate the strong short-range corre-
lations, we adopt an effective Hamiltonian approach, out-
lined below, in which a 2-body or 3-body cluster subsys-
tem of the full A-body problem is solved exactly. From
the exact solutions of the cluster subsystem, an effective
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Hamiltonian is evaluated in a model space appropriate
to the no-core many-body application at hand. The full
Hamiltonian is then approximated as a proper superpo-
sition of these cluster effective Hamiltonians and the no-
core many-body problem is then solved in the chosen basis
space [1]. The effective Hamiltonian and its eigensolutions
respect the symmetries of the underlying NN and NNN
interactions.

In this work, we indicate the utility of the ab initio

NCSM for solving quantum many-body problems in other
fields of physics. This utility is manifest when a limited
number of fermions and/or bosons represents well the sys-
tem of interest or a useful approximation to it. Specific
references are made to multi-quark plus multi-antiquark
systems and Hamiltonian formulations of quantum field
theory. Indeed, initial applications to these systems have
been published.

2 Ab initio No-Core Shell-Model

The method involves a similarity transformation of the
“bare” Hamiltonian to derive an effective Hamiltonian for
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a finite model space based on realistic NN and NNN in-
teractions [2,3,4,5,6,7,8]. Diagonalization and the eval-
uation of observables from effective operators created
with the same transformations are carried out on high-
performance parallel computers.

For pedagogical purposes, we outline the ab initio
NCSM approach with NN interactions alone and point
the reader to the literature for the extensions to include
NNN interactions. Note that another paper in these pro-
ceedings addresses results with NNN interactions in more
detail [9]. We begin with the purely intrinsic Hamiltonian
for the A-nucleon system, i.e.,

HA = Trel + V =
1

A

A
∑

i<j

(pi − pj)
2

2m
+

A
∑

i<j=1

VN(ij) , (1)

where m is the nucleon mass and VN(ij), the NN in-
teraction, with both strong and electromagnetic compo-
nents. Note the absence of a phenomenological single-
particle (sp) potential. We may use either coordinate-
space NN potentials, such as the Argonne potentials [10]
or momentum-space dependent NN potentials, such as the
CD-Bonn [11].

Next, we add the center-of-mass HO Hamiltonian to
the Hamiltonian (1) HCM = TCM + UCM, where UCM =
1
2AmΩ

2R2, R = 1
A

∑A
i=1 ri. At convergence, the added

HCM term has no influence on the intrinsic properties.
However, when we introduce our cluster approximation
below, the added HCM term facilitates convergence to ex-
act results with increasing basis size. The modified Hamil-
tonian, with a pseudo-dependence on the HO frequency Ω,
can be cast into the form

HΩA = HA +HCM =

A
∑

i=1

[

p2i

2m
+

1

2
mΩ2r2i

]

+

A
∑

i<j=1

[

VN(ij)−
mΩ2

2A
(ri − rj)

2

]

. (2)

Next, we introduce a unitary transformation, which is
designed to accommodate the short-range two-body corre-
lations in a nucleus, by choosing an antihermitian operator
S, acting only on intrinsic coordinates, such that

H = e−SHΩA e
S . (3)

In our approach, S is determined by the requirements
that H and HΩA have the same symmetries and eigen-
spectra over the subspace K of the full Hilbert space. In
general, both S and the transformed Hamiltonian are A-
body operators. Our simplest, non-trivial approximation
to H is to develop a two-body (a = 2) effective Hamilto-
nian, where the upper bound of the summations “A” is
replaced by “a”, but the coefficients remain unchanged.
The next improvement is to develop a three-body effec-
tive Hamiltonian, (a = 3). This approach consists then of
an approximation to a particular level of clustering with

a ≤ A,

H = H(1) +H(a) =

A
∑

i=1

hi +

(

A
2

)

(

A
a

)(

a
2

)

A
∑

i1<i2<...<ia

Ṽi1i2...ia ,

(4)
with

Ṽ12...a = e
−S(a)

HΩa e
S(a)

−

a
∑

i=1

hi , (5)

and S(a) is an a-body operator; HΩa = h1+h2+h3+ . . .+
ha+Va, and Va =

∑a
i<j Vij . Note that there is no sum over

“a” in eq. (4). Also, we adopt the HO basis states that are

eigenstates of the one-body Hamiltonian
∑A
i=1 hi.

If the full Hilbert space is divided into a finite model
space (“P -space”) and a complementary infinite space
(“Q-space”), using the projectors P andQ with P+Q = 1,
it is possible to determine the transformation operator Sa
from the decoupling condition

Qae
−S(a)

HΩa e
S(a)

Pa = 0 , (6)

and the simultaneous restrictions PaS
(a)Pa= QaS

(a)Qa=
0. Note that a-nucleon-state projectors (Pa, Qa) appear in
eq. (6). Their definitions follow from the definitions of the
A-nucleon projectors P , Q.

We note that in the limit a→ A, we obtain the exact
solutions for dP states of the full problem for any finite
basis space, with flexibility for choice of physical states
subject to certain conditions [12].

Note that this approach has a significant residual
freedom. There is an arbitrary residual Pa-space unitary
transformation that leaves the a-cluster properties invari-
ant. There is a similar freedom for theQa-space. Of course,
the A-body results are not invariant under this residual
transformation. An effort is underway to exploit this resid-
ual freedom to accelerate convergence in practical appli-
cations.

The model space, P2, is defined by Nm via the maxi-
mal number of allowed HO quanta of the A-nucleon basis
states, NM, using the condition that the sum of the nucle-
ons’ 2n+ l ≤ Nm+Nspsmin = NM, where Nspsmin denotes
the minimal possible HO quanta of the spectators, i.e.,
nucleons not affected by the interaction process. For ex-
ample, 10B, Nspsmin = 4 as there are 6 nucleons in the
0p-shell in the lowest HO configuration and, e.g., Nm =
2+Nmax, whereNmax represents the maximum HO quanta
of the many-body excitation above the unperturbed
ground-state configuration. For 10B, in our nomenclature,
NM = 12, Nm = 8 for an Nmax = 6 or “6~Ω” calculation.

On account of our cluster approximation, a depen-
dence of our results on Nmax (or equivalently, on Nm or
on NM) and on Ω arises. The residual Nmax and Ω depen-
dences can be used to infer the uncertainty in our results
arising from effects associated with increasing a.

We input the effective Hamiltonian, now consisting of
a relative 2-body operator and the pure HCM term intro-
duced earlier, into an m-scheme Lanczos diagonalization
process to obtain the P -space eigenvalues and eigenvec-
tors. At this stage we also add the term HCM again with
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a large positive coefficient (constrained via Lagrange mul-
tiplier) to separate the physically interesting states with
0s CM motion from those with excited CM motion. All
observables that are expressible as functions of relative co-
ordinates, such as the rms radius and radial densities, are
then evaluated free of CM motion effects.

Note that all observables require the same transfor-
mation as implemented for the Hamiltonian. We obtain
small effects on long range operators such as the rms ra-
dius operator and the B(E2) operator when we transform
them to P -space effective operators at the a = 2 cluster
level [1,13]. On the other hand, substantial renormaliza-
tion was observed for the kinetic energy operator when
using the a = 2 transformation to evaluate its expecta-
tion value [14].

Recent applications include:

a) spectra and transition rates in p-shell nuclei;
b) comparisons between NCSM and Hartree-Fock [15];
c) di-neutron correlations in the 6He halo nucleus [16];
d) neutrino cross sections on 12C [17];
e) using inverse scattering theory plus NCSM to obtain

novel NN interactions [18];
f) spectra of 16C and 16O [19];
g) spectroscopy of the A = 47–49 nuclei [20,21];
h) statistical properties of nuclei based on NCSM and ap-

proximations thereto [22];
i) exotic multiple quark systems [23];
j) plus others in quantum field theory that will not be

discussed due to time limitations.

Let us survey some of these applications and rely on
labels and captions to convey key information.

The ground-state energy of 6Li [18] as a function of
~Ω provides a gauge of the rate of convergence with in-
creasing model space as illustrated in fig. 1. The flatter
the curve and the more densely packed the curves become
with increasing basis space, then, the closer we are to the
converged result. Note that the JISP6 interaction has been
adjusted through a phase equivalent transformation, so as
to retain its excellent description of the NN data and to
provide a better fit to the properties of the p-shell nuclei
up through A = 6 [18].

A family of such potentials is now under development
that extend the range of nuclei well-described while retain-
ing NN phase shift equivalence and the deuteron proper-
ties. We use another member of this family, called JISP16,
to display in fig. 2 an observable related to elastic elec-
tron scattering, the RMS point proton radius of 4He. Each
curve again represents the results in a fixed model space
ranging over 0–14~Ω. The convergence with increasing
model space, the tendency towards independence of the
oscillator parameter, is good enough that by 8~Ω the fi-
nal result is obtained to within a few percent. While the
convergence of the RMS is a demanding test of our ap-
proach, the results for 4He should not be considered as
typical. We expect that the convergence of the RMS neu-
tron radius of a halo nucleus will be slower than for this
tightly bound nucleus due to the fact that we work within
an oscillator basis.
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Fig. 1. Ground-state energy (MeV) of 6Li with the CD-
Bonn [11] and JISP6 [18] effective interactions in various basis
spaces as a function of the oscillator parameter.
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Fig. 2. Point proton root-mean-square (RMS) radius of 4He
with the JISP16 [18] effective interactions in various basis
spaces as a function of the oscillator parameter.

The ground-state energies obtained in the ab initio

NCSM often follow smooth trends as a function of both
~Ω andNmax as seen, for example, in fig. 1. We display the
minima of such sequences of curves for 16O in fig. 3 for four
NN potentials. These minima also follow smooth trajecto-
ries and allow a good fit with a constant plus exponential
function for each NN potential as shown. This extrapola-
tion method has proven successful in lighter nuclei where
results closer to convergence are used to test its accuracy.
The obtained constants yield our predictions for the fully
converged binding energies which are −117(3), −116(5),
−138(3), −111(5) MeV for the CD-Bonn, AV8’, INOY-3,
N3LO potentials respectively. Our uncertainty in the last
digit is indicated in parenthesis and is based on experience
with different extrapolation strategies with these results.
The results straddle the experiment (−127.619 MeV) and
indicate the possible role of NNN potentials which are, in
principle, different for each NN potential.
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The positive-parity excitation spectra of 16O in fig. 4
show a favorable convergence trend when proceeding to
larger basis spaces. In particular, we note that the rms
difference between spectra in successive model spaces de-
creases significantly when progressing from the 2~Ω up

through the 6~Ω model spaces. This trend suggests a
converging spectra yet the rms differences from the ex-
perimental spectra are large (1.1 MeV) compared to the
change in the last model space increase (0.25 MeV). From
the sizable residual disparity with experiment, we con-
clude there is a need for genuine NNN potentials.

3 Phenomenological No-Core Shell Model

We now turn to heavier systems and select the 48Ca re-
gion since the lightest nuclear candidate for neutrinoless
double beta-decay is 48Ca. Given the intense interest in
this process as a method of inferring the Majorana mass
of the neutrino or for indicating the presence of processes
beyond the Standard Model, it is important that we focus
considerable effort on this nucleus and its neighbors.

At present, computational limits prevent a sequence
of multi-~Ω basis space evaluations so we resort to small
no-core basis spaces (0–1~Ω) and introduce phenomeno-
logical two-body terms to correct for the expected deficien-
cies. We use the name “ab initio NCSM” solely for results
obtained within the framework outlined above. When we
resort to phenomenological adjustments of the Hamilto-
nian, we will omit the label “ab initio” and simply re-
fer to the results as obtained within the “NCSM”. Even
with the phenomenological adjustments, our results are
obtained with a pure two-body Hamiltonian, i.e. without
single particle energies, and in a no-core model space lead-
ing to significant differences from traditional shell-model
calculations in valence spaces.

The specific forms we found adequate in fits to the
low-lying the spectra of 48Ca, 48Sc and 48Ti consist of
finite-range central and tensor potentials as follows:

V (r) = V0e
−(r/R)2/r2 + V1e

−(r/R)2/r2 + VtS12/r
3 , (7)

where the isospin-dependent central strengths, VT , are set
at V0 = −14.40 MeV fm2 and V1 = −22.61 MeV fm2 with
R = 1.5 fm, the tensor strength Vt = −52.22 MeV fm3,
and S12 is the conventional tensor operator.

Good spectra emerge [20,21] as well as good total bind-
ing energies shown in fig. 5 with the added terms.

The foremost deficiency of the CD-Bonn Heff in these
small model spaces is traced to insufficient splitting be-
tween the 0f7/2 and the 1p3/2 orbits as seen in the right-
most column of fig. 6. This is repaired well by the addi-
tion of the phenomenological two-body interaction terms.
(Note that 47Ca was not involved in our fitting proce-
dures.) This defect appears to be a continuation of the
insufficient spin-orbit splitting problem well-documented
in a variety of light nuclei results. Hence, it is likely that
the resolution of this problem will ultimately come from
the addition of genuine NNN interactions.

4 Further applications of the ab initio

No-Core Shell-Model

We have investigated the use of the ab initio NCSM to pre-
dict level densities for nuclei and to compare with simpler
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methods [22], one of which we have developed specifically
for no-core models. The initial results are very encourag-
ing. We find that a mean-field treatment with the derived
Heff to generate the self-consistent single-particle spec-
trum [15], followed by statistical occupancy of those lev-
els, can well-reproduce the ab initio NCSM results espe-
cially at higher excitation energies or higher temperatures.
One subtlety, that we are currently studying, concerns
the role of the spurious CM excitation which is absent in

Fig. 7. Three low-lying meson masses as a function ofNmax/2.
Both the bare Hamiltonian (points following curved trajecto-
ries) and the effective Hamiltonian (points following straight
lines) are solved in an oscillator basis.

the NCSM but present in models based on single-particle
spectra.

In order to provide a sense of the wide range of ap-
plications for the ab initio NCSM emerging in nuclear
physics, we present in fig. 7 a constituent-quark model
mass spectrum for three light mesons as a function of
Nmax/2. The Hamiltonian consists of a potential derived
from a relativistic wave equation treatment motivated by
QCD and supplemented with traditional assumptions of
massive constituent quarks [27]. It contains a term resem-
bling one-gluon exchange and a term with behavior close
to linear confinement.

One major goal of this effort is to predict masses for ex-
otic multiquark systems with sufficient precision to guide
experimental searches as we have demonstrated for all-
charm tetraquarks [23]. For this reason, all the techniques
of the ab initio NCSM are needed, including the effective
Hamiltonian treatment, as seen by the slow convergence
of the bare Hamiltonian mass spectra with increasing ba-
sis size. Note that the inclusion of the flavor degree of
freedom here is analogous to our isospin treatment in the
case of nucleons. However, the introduction of color repre-
sents a major additional degree of freedom as we seek to
predict global color singlet states which are antisymmetric
under that exchange of color, and which lie below breakup
thresholds into known mesons and baryons.

Given the rapid progress of the ab initio NCSM in
the last four years, one anticipates additional applica-
tions and extensions. It should have continuing impact
on developing the nuclear many-body “standard model”
including improvements in the NN and NNN interactions.
It should contribute high-precision results for the deter-
mination of fundamental symmetries in nature such as
nuclear double beta decay and the neutrino mass de-
termination. Extensions to scattering theory and to the
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structure of heavier nuclei are underway. Recently, ap-
plications to non-perturbative solutions of quantum field
theory have appeared [28] and underscore the potential
for cross-disciplinary applications.
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